Section 1.4

Definition of Continuity

Continuity at a Point: A function f is continuous at \boldsymbol{c} when these three conditions are met.

1. $f(c)$ is defined.
2. $\lim _{x \rightarrow c} f(x)$ exists.
3. $\lim _{x \rightarrow c} f(x)=f(c)$

Continuity on an open interval: A function is continuous on an open interval $(\boldsymbol{a}, \boldsymbol{b})$ when the function is continuous at each point in the interval. A function that is continuous on the entire real number line ($-\infty, \infty$) is everywhere continuous.

Discontinuity: If a function f is defined on an open interval I, and f is not continuous at some value $x=c$ on I, then f has a discontinuity at c. A discontinuity at c is called removable when f can be made continuous by appropriately (re)defining $f(c)$ (otherwise, it is nonremovable).

1) Discuss the continuity of each function, that is, state any values of x for which the function is not continuous, and state what type of discontinuity it is (removable or nonremovable).
a) $f(x)=\frac{x}{x^{2}-x-6}$
b) $g(x)=\frac{x+2}{x^{2}-4}$
c) $\quad h(x)= \begin{cases}1-x, & x<0 \\ x-1, & x \geq 0\end{cases}$
d) $y=\tan x$

The Existence of a Limit: Let f be a function, and let c and L be real numbers. The limit of $f(x)$ as x approaches c is L if and only if

$$
\lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L
$$

2) Find the following limits:
a) $\lim _{x \rightarrow-3^{+}} \sqrt{x^{2}-9}$
b) $\lim _{x \rightarrow 2^{-}} \llbracket \frac{1}{2} x \rrbracket$
3) Discuss the continuity of $f(x)=\sqrt{x^{2}-4}$.
4) Determine the interval(s) on which the following functions are continuous.
a) $f(x)=\csc x$
b) $f(x)= \begin{cases}x^{2} \cos \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$

Intermediate Value Theorem: If f is continuous on the closed interval $[a, b], f(a) \neq f(b)$, and k is any number between $f(a)$ and $f(b)$, there is at least one number c in $[a, b]$ such that $f(c)=k$.
5) Use the Intermediate Value Theorem to show that the function $f(x)=x^{3}-2 x^{2}+2$ has a zero on the interval $[-1,0]$.

Homework for this section: Read the section and watch the videos/tutorials. Then do these problems in preparation for the quiz: $\# 4,9,13,19,28,47,53,56,61,66,95$

